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It  is shown that the main deficiencies of wavefunctions of Har t r ee -Fock  type 
(wrong dissociation behavior and absence of correlation between electrons 
of unlike spin) may be corrected by a simple method. Just sufficient CI is 
admitted to ensure qualitatively correct dissociation, while the short-range 
correlation energy is estimated with the Colle-Salvetti  functional. Potential 
energy curves for H2 and LiH are computed at various levels of approximation 
and the main features of the method are discussed. 
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1. Introduction 

It is well-known that the closed-shell self-consistent field (SCF) method,  even 
when carried to the Har t r ee -Fock  (HF) limit, possesses two main defects when 
applied to molecules: (i) incorrect description of the short-range correlation 
between electrons of unlike spin as r12 ~ 0, and (ii) incorrect behavior of the 
wavefunction at large internuclear distances. The origin of these deficiencies has 
been extensively discussed (see, for example, Refs. [1, 2]): the standard way of 
overcoming them is to admit configuration interaction (CI) in one form or another. 
Unfortunately,  in order to reproduce the expected behavior of an "exact"  
wavefunction [3,4], and an "exac t"  pair distribution function [5], ag two electrons 
approach,  it is necessary to include an extremely large number  of configurations 
in the CI expansion even for small molecules [6, 7]. Consequently, the present 
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trend in ab initio quantum chemistry is towards vast CI calculations involving as 
many as 105 configurational functions. 

In the present paper, by contrast, we explore an alternative way of dealing with 
the deficiencies exhibited by a simple reference function, the aim being to treat 
(i) and (ii) (above) separately, whilst retaining a wavefunction of very simple 
(few-configuration) form. The wrong dissociation behavior (ii) is corrected by 
using a multiconfiguration (MC) SCF wavefunction, containing only sufficient CI 
to obtain a qualitatively satisfactory description at large internuclear distances. 
The short-range correlation "cusp" (responsible for (i)) is introduced by the 
method of Colle and Salvetti [8], and leads to a correlation energy functional 
involving one- and two-electron density matrices derived (in the present case) 
from the MC SCF reference function. Although evaluation of the correlation 
functional requires the development of numerical integration techniques, the 
total computational effort involved is very small by presesnt-day standards and 
the wavefunction retains a conceptual simplicity. 

In the next section we briefly review the Colle-Salvetti approach and then we 
present and discuss some results for the molecules LiH and H2. 

2. The Colle-Salvett i  functional 

In the approach used by Colle and Salvetti [8, 9], an already known reference 
function, of HF or limited MC SCF form, is improved by adding a short-range 
correlation factor. The wave-function is thus taken to be 

~ttf(Xl, X2 . . . . .  XN) : ~tI/MC(xl, X2 . . . . .  XN) 1-I [1 - -  ~b(r,, rj)] ( 2 . 1 )  
i>j 

where the MC SCF function ~MC will usually be derived by optimizing a short 
CI expansion, while ~b(ri, rj) is a short-range correlation function. It is convenient 
to choose 

4~(r/, rj) = exp (-/32r2)[1 -dP(R~i)(1 +lrJao)] (2.2) 

where rlj=(ri-r~), Rij=�89 This function behaves correctly for r12-->0, 
while/3(R~j) and cb(R~j) allow the form of the "correlation hole" [5] to depend 
on the position of the pairs ij. Integral conditions impose a relationship between 

and/3 which may be accurately fitted by taking 

alp(R) = ~/-~" a0/3/(1 +~/~ a0/3) (2.3) 

and only one function,/3(R), then remains; if this is assumed to depend, in first 
approximation, only on the electron density P(R), then dimensional consistency 
requires 

/3(R) = qP(R) ~/3 (2.4) 

where q is a dimensionless constant. 
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The correlation correction to the reference-function energy is then found to be 

27r I pMC(R, R)  
Ec = q3 pMC(R) G(fl, W) dR (2.5) 

where pMC and P2 Mc are the one- and two-electron (spinless) density matrices, 
respectively, while 1 

0 .121-0 .0167W+ 0.0458//3 - 0.0102W//3 
G(fl, W) - 1 + 1.1284/3 +0.3183//32 (2.6) 

and the quantity W is given by 

2 M C  1 V~P2 (R-~r ,R+�89  
W -  pMC(R, R)/3 2 (2.7) 

An alternative expression for the correlation energy, also used by Colle and 
Salvetti, is obtained on replacing G(/3, W) by a somewhat simpler function 
H(/3, W) which may be chosen to fit G(/3, W) quite closely. This procedure leads 
to the expression 

i Ec = - (0 .09836)  ( R , R )  1 + 0 . 1 7 3 W  exp ( -0 .58/ /3)  dR (2.8) 
P(R) 1 + 0.8//3 

When the reference function is of Har t ree-Fock form, there is a further 
simplification, affecting (2.7) as well as (2.5) and (2.8), since 2 

PHV (rx, r2)= P(r,)P(r2)-1/2P(r2; rOP(rl ;r2) (2.9) 

and expressions (2.5) and (2.8) then reduce to the original forms used by Colle 
and Salvetti [8]. 

The results of numerical calculations of the correlation energy for a number of 
closed-shell atoms and molecules, using the HF reference function, are extremely 

good. Salvetti and co-workers have also applied the method to the excited states 
of the BeF radical [10] and t o t h e  V-N transition of planar ethylene [11], again 
with encouraging results. 

The same functional (2.2) was also discussed by McWeeny [12] who applied it 
to the uniform electron gas, obtaining good results not only at the high and 
low-density limits but over the whole density range. 

In testing our numerical integration programmes we repeated some of the 
calculations of Colle and Salvetti and, using Eq. (2.8), were able to reproduce 
their results; for this reason we have adopted (2.8) instead of (2.7) as a simpler 
and more satisfactory (though perhaps more empirical) expression for the correla- 
tion energy. 

1 The coefficient of W/fl in (2.6) appears to be given incorrectly (as -0.005) in Ref. [8]. Henceforth, 
we use atomic units e, h, ao (Bohr radius) and E h (Hartree). 
2 p(rl ; r2 ) is the "off-diagonal" element of the one-electron density matrix, reducing to P(r) when 
r l  = It2 = r .  
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3. Results and discussion 

For our test calculations we first chose the l~+ ground state of the molecule LiH, 
partly for simplicity of the system and partly in view of a number of careful 
theoretical and experimental investigations already published [7, 13-16]. 

3.1. Calculation I 

The first calculation was performed with a non-optimized minimal (Slater) basis 
set [17]. The SCF and MC SCF results and the correlation corrections for both 
wavefunctions are listed in Tables 1 and 2, while Figs. 1 and 2 make comparisons 
with the Morse curve [14]. The MC SCF function used in this calculation includes 
only two configurations (10"220 -2 and 10-230-2), this being sufficient to correct the 
wrong dissociation behavior of the HF function [13]. 

The following points should be noted 
(i) At small and intermediate distances (R < 4.0a0) the correlation corrections 
are rather accurate. In particular, at equilibrium (R = 3.015ao), the computed 
SCF correlation energy is -0.08413Eh, which can be compared with the figure 
of --0.08259Eh derived from Cade and Huo's results [16]. For R = 1.0a0 the 
correlation energy is --0.092890Eh, which is again in very good agreement with 
the united-atom (Be, in this case) correlation energy which is --0.0940Eh [8]. 
(ii) At large internuclear distances the SCF results confirm our expectation that 
the computed correlation energy would not be reliable (owing to the incorrect 
dissociation behavior of this wavefunction). In this region, it would be reasonable 
to expect a correlation energy approximately equal to that of the Li atom, which 
is --0.046Eh [18]; the computed value (-0.077Eh) is much too large. 

Table 1. Energies (E) and correlation corrections (Ec) for LiH 
(a.u.) SCF calculation using Ransil's minimal basis set 

R E(SCF) Ec(SCF) E +Ec(SCF) 

1.00 -7.183031 -0.092793 -7.275824 

2.00 -7.880674 -0.090064 -7.979738 

2.50 -7.948610 -0.086689 -8.035299 

2.80 -7.962935 -0.085068 -8.048003 

3.015 -7.966663 -0.084128 -8.050791 

3.20 -7.966916 -0.083425 -8.050341 

3.50 -7.963268 -0.082434 -8.046114 

4.00 -7.950356 -0.081166 -8.031522 

5.00 -7.914427 -0.079488 -7.993915 

6.00 -7.877545 -0.078484 -7.956029 

7.00 -7.845303 -0.077805 -7.923108 

10.00 -7.785500 -0.077314 -7.855769 

13.00 -7.762256 -0.077410 -7.839966 
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Table 2. Energies (E) and correlation corrections (Ec) for LiH 
(a.u.) MCSCF (2 config.) calculation using Ransil's minimal basis 
set 

R E(MC) Ec(MC) E + Ec(MC) 

1.00 -7.196864 -0.088391 -7.285255 

2.00 -7.893033 -7.978258 -7.978258 

2.50 -7.961983 -0.081391 -8.043374 

2.80 -7.977282 -0.079378 -8.056660 

3.015 -7.981907 -0.078050 -8.059957 

3.20 -7.983084 -0.076971 -8.060055 

3.50 -7.981275 -0.075260 -8.056535 

4.00 -7.972457 -0.072483 -8.044940 

5.00 -7.949202 -0.066508 -8.015710 

-6.00 -7.931855 -0.060264 -7.992114 

7.00 -7.923448 -0.055747 -7.979195 

-10.00 -7.918564 -0.052037 -7.970601 

13.00 -7.918342 -0.051712 -7.970053 

(iii) The MC SCF correlation corrections are, as expected, consistently smaller 
than the corresponding SCF results; the difference increases with the internuclear 
distance. This is due to the overestimation of P2(rl, r2) in the SCF approximation, 
an error which increases with the internuclear distance. 
(iv) Although not as accurate as the SCF at small and intermediate distances, 
the MC SCF correlation corrections are quite satisfactory. The errors in these 
corrections are of the order of 5%. More important, the MC SCF results have 

Fig. 1. Comparison of SCF potential 
curves with experiment for LiH (1) 
SCF; (2) SCF plus correlation correc- 
tion; (3) Morse curve 
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Fig. 2. Comparison of MCSCF (2 con- 
fig.) potential curves with experiment 
for LiH (1) MCSCF; (2) MCSCF plus 
correlation correction; (3) Morse 
c u r v e  

the expected behavior at large internuclear separation; at R = 13.0a0, for 
example, the correction is -0 .051Eh which is very close to the correlation energy 
of the Li atom. 

To examine whether the computed value of Ec depends significantly on the 
number of configurations in the MC SCF wavefunction, we repeated the previous 
calculation using all possible excitations from the reference wavefunction (9 
configurations). The computed correlation corrections (E~) change by not more 
than about 5 % from their values in Table 2. This supports the view that further 
(limited) CI is not effective in improving ,~ in the cusp region and that the same 
short-range correction (E~) may be applied whenever reasonably well-behaved 
density functions are available, without the need for a full re-calculation whenever 
the wavefunction is improved. 

3.2. Calculation H 

To study the dependence on the basis set we repeated our calculations using an 
improved basis set proposed by Kahalas and Nesbet [19], except that the 2p 
functions on H were given the same exponent (~ = 1.00). The MC SCF wavefunc- 
tion was constructed from two configurations, as in the first calculation. The SCF 
results are summarized in Fig. 3 and the MC SCF in Fig. 4. 

The main features of these results are as follows: 
(i) The correlation corrections (Ec) derived from both the SCF and MCSCF 
functions differ only slightly (by about 1-2%) from those in the minimal basis 
calculations. 
(ii) The correlated SCF potential curve is very accurate at small and intermediate 
internuclear distances and again, as expected, incorrect at large distances. 
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Fig. 3. Comparison of SCF potential 
curves with experiment for LiH (1) 
SCF, (2) SCF plus correlation correc- 
tion; (3) Morse curve (Improved 
basis--see text) 
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Fig. 4. Comparison of MCSCF (2 con- 
fig.) potential curves and experiment 
for LiH (1) MCSCF; (2) MCSCF plus 
correlation correction; (3) Morse 
curve (Improved basis-see  text) 
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(iii) The correlated MC SCF potential curve lies below the experimental curve 
for most  internuclear distances. The largest discrepancy appears around the 
equilibrium geometry,  where the correlation correction is overestimated by 16%. 

The results of Calculations I and II lead to the following preliminary conclusions: 
(a) The use of an improved basis set is not crucial to the evaluation of the 
correlation correction using the Colle-Salvetti  functional. This means that even 
a calculation involving a minimal basis set can be used to obtain a good estimate 
of the correlation correction. 
(b) When the computed correlation correction is added to the MC SCF potential 
energy curve a significant over-correction may result. 
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A reasonable explanation of (b) is not hard to find. The parameter q in the 
Colle-Salvetti functional was chosen (q = 2.29) so that Ec would give the whole 
of the correlation energy for the He atom, using an uncorrelated (SCF) reference 
function; in other words, the functional was adapted to give a good account of 
the intra-atomic correlation correction needed, without CI. The situation in our 
LiH calculation is somewhat different; two of the four electrons are valence 
electrons, in a bond region, and "left-right" correlation (accounting for about 
17% of the total correlation energy) has been admitted already in the MC SCF 
function. It is therefore not surprising that addition of Eo parameterized for an 
uncorrelated atomic SCF function, leads to over-correction of the molecular MC 
SCF result. 

4. Conclusion 

The results reported in Sect. 3 indicate that accurate potential energy curves can 
be obtained by applying a Colle-Salvetti correlation correction to the results 
obtained from MC SCF calculations with minimal CI. The choice of the q 
parameter,  however, is crucial if high accuracy is required and the original method 
of fitting q, by reference to a HF calculation on the He atom, is clearly both 
provisional and somewhat unsatisfactory. 

The need to allow for some variation of parameters has been recognized already 
by Colle and Salvetti [9], and has also been proposed by Moscardo and Delgado- 
Barrio [14]. The latter authors reached the unfortunate conclusion that the only 
way to get an accurate potential energy curve for LiH was to use an empirical 
relationship between q and the internuclear distance R -  a procedure which 
would be so arbitrary as to make the whole approach worthless. We find their 
conclusion erroneous, possibly as a result of their use of expression (2.5) with 
the incorrect coefficient noted in Footnote  1. 

Colle and Salvetti [9], on the other hand, proposed that q in (1.4) should become 
a function of R, so chosen as to reduce the size of the correlation hole to zero 
for an "exact"  (e.g. extended CI) reference function. They obtain good potential 
curves in this way for H2 and Li2, but the complexity of the computation is greatly 
increased. 

The argument in Sect. 3 suggests that the much simpler procedure of keeping q 
constant, but with a value dependent on the molecule considered and on the 
quality of the wavefunction, might be satisfactory. Clearly the value chosen should 
take account of the limited CI used and it should refer to the molecular situation 
(not to an atomic reference calculation). It would therefore seem natural to 
choose q by reference to one point on the potential energy curve, the obvious 
choice being that which corresponds to the equilibrium geometry. 

To test the validity of such a procedure we have repeated the extended basis set 
MC SCF calculation on LiH, choosing the value of q so as to reproduce the 
empirical correction needed (Eexp-EMCSCF) at the equilibrium distance; and we 
have used the same method for the molecule H2, this being the unique case in 
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which all the electrons are valence electrons and the use of q = 2.29 (for the 
hel ium atom) seems particularly inappropriate .  

The  results of these calculations are displayed in Figs. 5, 6. The  q values used 
are q = 1.966 for L iH (2 core  electrons, 2 valence electrons) and q = 1.576 for  
/-/2 (no core electrons),  figures which seem to  suppor t  the a rgument  at the end 
of Section 3. The  almost  perfect  agreement  of our  H2 potential  with that  given 
by Kolos  and Wolniewicz [20] is part icularly pleasing. 

Our  main conclusion, then,  is that  a simple M C  SCF reference function,  with a 
Colle-Salvet t i  correlat ion correct ion,  is capable  of yielding highy accurate  poten-  
tial energy curves for  simple molecules. Only  one parameter  is needed (q) and 

-7.95 

Fig. 6. Comparison of MCSCF (2 con- 
fig.) potential curves with experiment 
for H 2 (1) MCSCF; (2) MCSCF plus 
correlation correction; (3) Kolos and 
Wolniewicz's results. (Parameter q = 
1.576) 
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this is i ndependen t  of molecular  geometry.  Fur the r  calculations,  to be repor ted  
eslsewhere, confirm that  the value q = 2.29 remains  appropr ia te  for molecules 
conta in ing  atoms with uncor re la ted  inner-shel l  wavefunctions.  Only  when  a 

substant ial  fraction of the total  corre la t ion energy is already accounted  for in the 
va lence-e lec t ron  funct ion (as in our  Ha and  LiH calculations),  is it necessary to 
reduce the q value somewhat  to avoid overes t imat ion of the corre la t ion energy; 

in such cases q may be fixed by reference to one point  on the potent ia l  energy 

curve. 
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